d0l — Quadrature d01ssc

NAG C Library Function Document

nag 1d quad _inf wt trig 1 (d01ssc)

1 Purpose

nag 1d quad inf wt trig 1 (dOlssc) calculates an approximation to the sine or the cosine transform of a
function g over [a, o0):

1= /oog(:v) sin(wz) de or = /oog(x) cos(wz) dx

(for a user-specified value of w).

2 Specification

#include <nag.h>
#include <nagdOl.h>

void nag_1ld_quad_inf_wt_trig_1(double (*g) (double x, Nag_User *comm),
double a, double omega, Nag_TrigTransform wt_func,
Integer maxintervals, Integer maxsubints_per_interval,
double epsabs, double *result, double *abserr,
Nag_QuadSubProgress *gpsub, NAG_User *comm, NagError *fail)

3 Description

This function is based upon the QUADPACK routine QAWFE (Piessens et al. (1983)). It is an adaptive
routine, designed to integrate a function of the form g(x)w(x) over a semi-infinite interval, where w(z) is
either sin(wzx) or cos(wz). Over successive intervals

Cpr=la+(k—1)xc,a+kxc], k=1,2,..., qpsub.intervals

integration is performed by the same algorithm as is used by nag 1d quad wt trig 1 (dOlsnc). The
intervals C; are of constant length

¢ = {2[fl + /e, w0,

where [|w|] represents the largest integer less than or equal to |w|. Since ¢ equals an odd number of half
periods, the integral contributions over succeeding intervals will alternate in sign when the function g is
positive and monotonically decreasing over [a,c0). The algorithm, described by Piessens et al. (1983),
incorporates a global acceptance criterion (as defined by Malcolm and Simpson (1976)) together with the
e-algorithm (Wynn (1956)) to perform extrapolation. The local error estimation is described by Piessens et
al. (1983).

If w=0 and wt func = Nag Cosine, the routine uses the same algorithm as nag 1d quad inf 1
(d01smc) (with epsrel = 0.0).

In contrast to most other functions in Chapter dO1, nag 1d quad inf wt trig 1 works only with a user-
specified absolute error tolerance (epsabs). Over the interval Cj, it attempts to satisfy the absolute accuracy
requirement

EPSA, = Uy x epsabs,
where U, = (1 —p)p*~!, for k=1,2,... and p =0.9.

However, when difficulties occur during the integration over the kth interval Cj, such that the error flag
qgpsub—interval_flag[k — 1] is non-zero, the accuracy requirement over subsequent intervals is relaxed.
See Piessens et al. (1983) for more details.

[NP3491/6] d0lssc.]

dO01ssc NAG C Library Manual

4 Parameters
I: g — function supplied by user Function
The function g, supplied by the user, must return the value of the function g at a given point.

The specification of g is:

double g(double x, Nag_User *comm)

I: x — double Input

On entry: the point at which the function g must be evaluated.

2: comm — Nag User *

On entry/on exit: pointer to a structure of type Nag_User with the following member:

p — Pointer Input/Output

On entry/on exit: the pointer comm—p should be cast to the required type, e.g.,
struct user *s = (struct user *)comm->p, to obtain the original object’s
address with appropriate type. (See the argument comm below.)

2: a — double Input

On entry: the lower limit of integration, a.

3: omega — double Input

On entry: the parameter w in the weight function of the transform.

4: wt_func — Nag_TrigTransform Input
On entry: indicates which integral is to be computed:
if wt_func = Nag_Cosine, w(x) = cos(wz);
if wt_func = Nag_Sine, w(x) = sin(wz).

Constraint: wt_func = Nag_Cosine or Nag_Sine.

5: maxintervals — Integer Input
On entry: an upper bound on the number of intervals Cj needed for the integration.
Suggested value: maxintervals = 50 is adequate for most problems.

Constraint: maxintervals > 3.

6: maxsubints_per_interval — Integer Input

On entry: the upper bound on the number of sub-intervals into which the interval of integration may
be divided by the function. The more difficult the integrand, the larger max_num_subint should
be.

Suggested values: a value in the range 200 to 500 is adequate for most problems.

Constraint: max_num_subint > 1.

7: epsabs — double Input

On entry: the absolute accuracy required. If epsabs is negative, the absolute value is used. See
Section 6.1.

d0lssc.2 [NP3491/6]

d0l — Quadrature d01ssc

8:

10:

result — double * Output

On exit: the approximation to the integral I.

abserr — double * Output
On exit: an estimate of the modulus of the absolute error, which should be an upper bound for
|I—result|.

gpsub — Nag QuadSubProgress *

Pointer to structure of type Nag_QuadSubProgress with the following members:

intervals — Integer Output

On exit: the number of intervals C}, actually used for the integration.

fun_count — Integer Output

On exit: the number of function evaluations performed by nag 1d quad_inf wt trig 1.

subints_per_interval — Integer * Output
On exit: the maximum number of sub-intervals actually used for integrating over any of the
intervals CY.

interval_error — double * Output
On exit: the error estimate corresponding to the integral contribution over the interval CY, for
k=1,2,... qpsub.intervals.

interval_result — double * Output
On exit: the corresponding integral contribution over the interval Cy, for k=1,2,...,
gpsub.intervals.

interval flag — Integer * Output

On exit: the error flag corresponding to qpsub.interval result, for £t =1,2,...,
gpsub.intervals. See also Section 5.

When the information available in the arrays interval_error, interval_result and interval_flag is no
longer useful, or before a subsequent call to nag 1d quad inf wt trig 1 with the same parameter
gpsub is made, the user should free the storage contained in this pointer using the NAG macro
NAG_FREE. Note that these arrays do not need to be freed if one of the error exits
NE_INT_ARG_LT, NE_BAD PARAM or NE_ALLOC_FAIL occured.

comm — Nag User *

On entry/on exit: pointer to a structure of type Nag_User with the following member:

p — Pointer Input/Output

On entry/on exit: the pointer p, of type Pointer, allows the user to communicate information
to and from the user-defined function g(). An object of the required type should be declared
by the user, e.g., a structure, and its address assigned to the pointer p by means of a cast to
Pointer in the calling program, e.g., comm.p = (Pointer)ss. The type Pointer is void *.
fail — NagError * Input/Output

The NAG error parameter (see the Essential Introduction).

Users are recommended to declare and initialise fail and set fail.print = TRUE for this function.

[NP3491/6] d01ssc.3

dO01ssc NAG C Library Manual

5 Error Indicators and Warnings

NE_INT ARG_LT
On entry, maxsubints_per_interval must not be less than 1: maxsubints_per_interval = <value>.

On entry, maxintervals must not be less than 3: maxintervals = <value>.

NE_BAD PARAM

On entry, parameter wt_func had an illegal value.

NE_ALLOC_FAIL

Memory allocation failed.

NE_QUAD _MAX_SUBDIV

The maximum number of subdivisions has been reached: maxsubints_per_interval = <value>.
The maximum number of subdivisions within an interval has been reached without the accuracy
requirements being achieved. Look at the integrand in order to determine the integration difficulties.
If the position of a local difficulty within the interval can be determined (e.g., a singularity of the
integrand or its derivative, a peak, a discontinuity, etc.) you will probably gain from splitting up the
interval at this point and calling this function on the infinite subrange and an appropriate integrator
on the finite subrange. Alternatively, consider relaxing the accuracy requirements specified by
epsabs or increasing the value of maxsubints_per_interval.

NE_QUAD_ROUNDOFF_ABS_TOL

Round-off error prevents the requested tolerance from being achieved: epsabs = <value>.

The error may be underestimated. Consider relaxing the accuracy requirements specified by epsabs.
NE_QUAD_BAD_SUBDIV

Extremely bad integrand behaviour occurs around the sub-interval (<value>, <value>).

The same advice applies as in the case of NE_ QUAD_MAX_ SUBDIV.
NE_QUAD_ROUNDOFF_EXTRAPL

Round-off error is detected during extrapolation.

The requested tolerance cannot be achieved, because the extrapolation does not increase the

accuracy satisfactorily; the returned result is the best that can be obtained.

The same advice applies as in the case of NE_ QUAD_MAX SUBDIV.
NE_QUAD_BAD_SUBDIV_INT

Bad integration behaviour has occured within one or more intervals.

NE_QUAD_MAX_INT

Maximum number of intervals allowed has been achieved. Increase the value of maxintervals.

NE_QUAD_EXTRAPL_INT

The extrapolation table constructed for convergence acceleration of the series formed by the integral
contribution over the integral does not converge.

In the cases where fail.code = NE_QUAD_BAD_SUBDIV_INT, NE QUAD_MAX INT or
NE_QUAD_EXTRAPL_INT, additional information about the cause of the error can be obtained from
the array qpsub—interval flag, as follows:

gpsub.interval_flag[k — 1] = 1

The maximum number of subdivisions (= maxsubints_per_interval) has been achieved on
the kth interval.

d01ssc.4 [NP3491/6]

d01 — Quadrature dO01ssc

qpsub.interval_flag[k — 1] = 2

Occurrence of round-off error is detected and prevents the tolerance imposed on the kth
interval from being achieved.

qpsub.interval_flag[k — 1] = 3
Extremely bad integrand behaviour occurs at some points of the kth interval.
qpsub.interval_flaglk — 1] = 4

The integration procedure over the kth interval does not converge (to within the required
accuracy) due to round-off in the extrapolation procedure invoked on this interval. It is
assumed that the result on this interval is the best which can be obtained.

qpsub.interval_flaglk — 1] = 5

The integral over the kth interval is probably divergent or slowly convergent. It must be
noted that divergence can occur with any other value of gpsub.interval_flag[k — 1].

If users declare and initialise fail and set fail.print = TRUE as recommended then

NE_QUAD_NO_CONV

The integral is probably divergent or slowly convergent.
Please note that divergence can also occur with any error exit other than NE _INT ARG _LT,
NE_BAD_PARAM or NE_ALLOC_FAIL.

may be produced supplemented by messages indicating more precisely where problems were encountered
by the function. However, if the default error handling, NAGERR_DEFAULT, is used then one of the
following errors may occur. Please note the program will terminate when the first of such errors is
detected.

NE QUAD MAX SUBDIV_SPEC_INT

The maximum number of subdivisions has been reached,
maxsubints_per_interval = <value> on the <value> interval.
interval_flag[<value>] = <value> over sub-interval (<value>, <value>).

NE_QUAD_ROUNDOFF_TOL_SPEC_INT

Round-off error prevents the requested tolerance from being achieved on the <value> interval.
interval_flag[<value>] = <value> over sub-interval (<value>, <value>).

NE_QUAD_BAD_SPEC_INT

Bad integrand behaviour occurs at some points of the <value> interval.
interval_flag[<value>] = <value> over sub-interval (<value>, <value>).

NE_QUAD NO_CONV_SPEC_INT

The integral has failed to converge on the <value> interval.
interval_flag[<value>] = <value> over sub-interval (<value>, <value>).

NE_QUAD BAD DIVERGENCE_SPEC_INT

The integral is probably divergent on the <value> interval.
interval flag[<value>] = <value> over sub-interval (<value>, <value>).

6 Further Comments

The time taken by nag 1d quad inf wt trig 1 depends on the integrand and on the accuracy required.

[NP3491/6] d0lssc.5

dO01ssc NAG C Library Manual

6.1 Accuracy
The function cannot guarantee, but in practice usually achieves, the following accuracy:
|I — result| < |epsabs|

where epsabs is the user-specified absolute error tolerance. Moreover it returns the quantity abserr which,
in normal circumstances, satisfies

|I — result| < abserr < |epsabs].

6.2 References

Malcolm M A and Simpson R B (1976) Local versus global strategies for adaptive quadrature ACM Trans.
Math. Software 1 129-146

Piessens R, De Doncker-Kapenga E, Uberhuber C and Kahaner D (1983) QUADPACK, A Subroutine
Package for Automatic Integration Springer-Verlag

Wynn P (1956) On a device for computing the e,,(S,) transformation Math. Tables Aids Comput. 10
91-96

7 See Also

nag_1d quad_inf 1 (dOlsmc)
nag 1d quad wt trig 1 (dOlIsnc)

8 Example

To compute

/OOC %cos(m:ﬂ) dx.

8.1 Program Text

/* nag_ld_quad_inf_wt_trig_1(d0lssc) Example Program
Copyright 1998 Numerical Algorithms Group.

Mark 5, 1998.

* ok K Kk ok

Mark 6 revised, 2000.
*/

#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <math.h>
#include <nagdOl.h>
#include <nagx01l.h>

static double g(double x, Nag_User *comm) ;

main()

{
double a;
double omega;
double epsabs, abserr;
Nag_TrigTransform wt_func;
double result;

d01ssc.6 [NP3491/6]

d0l — Quadrature

Nag_QuadSubProgress gpsub;

Integer maxintervals, maxsubint_per_int;
static NagError fail;

Nag_User comm;

Vprintf ("dOlssc Example Program Results\n");
epsabs = 0.001;

a = 0.0;

omega = X01lAAC * 0.5;

wt_func = Nag_Cosine;

maxintervals = 50;

maxsubint_per_int = 500;

dO0lssc(g, a, omega, wt_func, maxintervals, maxsubint_per_int,
epsabs, &result, &abserr, &gpsub, &comm, &fail);

Vprintf ("a - lower limit of integration = %10.4f\n", a);
Vprintf ("b - upper limit of integration = infinity\n");
Vprintf ("epsabs - absolute accuracy requested = %9.2e\n\n", epsabs);
if (fail.code != NE_NOERROR)
Vprintf ("ss\n", fail.message);
if (fail.code != NE_INT_ARG_LT && fail.code != NE_BAD_PARAM &&
fail.code != NE_ALLOC_FAIL)
{
Vprintf ("result - approximation to the integral = %9.5f\n", result);
Vprintf ("abserr - estimate of the absolute error = %9.2e\n", abserr)
Vprintf ("gpsub.fun_count - number of function evaluations = %41d\n"

gpsub.fun_count) ;

Vprintf ("gpsub.intervals - number of intervals used = %41d\n",
gpsub.intervals);

Vprintf ("gpsub.subints_per_interval - \n\

maximum number of subintervals used in any one interval = %41d\n",

gpsub.subints_per_interval);

/* Free memory used by gpsub */
NAG_FREE (gpsub.interval_error);
NAG_FREE (gpsub.interval_result);
NAG_FREE (gpsub.interval_flag);
exit (EXIT_SUCCESS);

}

else
exit (EXIT_FAILURE) ;

static double g(double x, Nag_User *comm)

{

return (x > 0.0) ? 1.0/sqrt(x) : 0.0;

8.2 Program Data

None.

[NP3491/6]

d01ssc

i

14

d0lssc.7

d01ssc

8.3 Program Results

dOlssc Example Program Results

a - lower limit of integration = 0.0000

b - upper limit of integration = infinity

epsabs - absolute accuracy requested = 1.00e-03

result - approximation to the integral = 1.00000
abserr - estimate of the absolute error = 5.92e-04
gpsub.fun_count - number of function evaluations = 380
gpsub.intervals - number of intervals used = 6

gpsub.subints_per_interval -
maximum number of subintervals used in any one interval

NAG C Library Manual

= 8

d0l1ssc.8 (last)

[NP3491/6]

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

